


 Introduction
◦ Research field
◦ DBMS vs. DSMS
◦ Motivation

 Concepts and Issues
◦ Requirements
◦ Architecture
◦ Data model
◦ Queries
◦ Data reduction
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 New and active research field (~ 10 years) 
derived from the database community
◦ Stream algorithms
◦ Application and database perspective (we)

 Two syllabus articles:
◦ Brian Babcock, Shivnath Babu, Mayur Datar, 

Rajeev Motwani, Jennifer Widom: "Models and 
issues in data stream systems" 

◦ Lukasz Golab, M. Tamer Ozsu: "Issues in data 
stream management”

 Future: Complex Event Processing (CEP)
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 Traditional DBMS: 
◦ stored sets of relatively 

static records with no 
pre-defined notion of 
time

◦ good for applications 
that require persistent 
data storage and 
complex querying
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DSMS:
support on-line analysis of 
rapidly changing data 
streams
data stream: real-time, 
continuous, ordered 
(implicitly by arrival time or 
explicitly by timestamp) 
sequence of items, too 
large to store entirely, not 
ending
continuous queries



DBMS

 Persistent relations 

(relatively static, stored)

 One-time queries

 Random access

 “Unbounded” disk store

 Only current state matters

 No real-time services

 Relatively low update rate

 Data at any granularity

 Assume precise data

 Access plan determined by 

query processor, physical DB 

design
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DSMS

Transient streams 

(on-line analysis)

Continuous queries (CQs)

Sequential access

Bounded main memory

Historical data is important

Real-time requirements

Possibly multi-GB arrival rate

Data at fine granularity

Data stale/imprecise

Unpredictable/variable data arrival and 

characteristics

Adapted from [Motawani: PODS tutorial]



 Sensor Networks

◦ E.g. TinyDB. See earlier lecture by Jarle Søberg

 Network Traffic Analysis

◦ Real time analysis of Internet traffic. E.g., 
Traffic statistics and critical condition 
detection.

 Financial Tickers
◦ On-line analysis of stock prices, discover 

correlations, identify trends.

 Transaction Log Analysis

◦ E.g. Web click streams and telephone calls
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Pull-based

Push-based



 A data stream is a (potentially unbounded) sequence of 
tuples

 Each tuple consist of a set of attributes, similar to a row in 
database table

 Transactional data streams: log interactions between entities

◦ Credit card: purchases by consumers from merchants

◦ Telecommunications: phone calls by callers to dialed parties

◦ Web: accesses by clients of resources at servers

 Measurement data streams: monitor evolution of entity 
states

◦ Sensor networks: physical phenomena, road traffic

◦ IP network: traffic at router interfaces

◦ Earth climate: temperature, moisture at weather stations
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 Massive data sets:
◦ Huge numbers of users, e.g.,

 AT&T long-distance: ~ 300M calls/day

 AT&T IP backbone: ~ 10B IP flows/day

◦ Highly detailed measurements, e.g.,

 NOAA: satellite-based measurements of earth 
geodetics

◦ Huge number of measurement points, e.g.,

 Sensor networks with huge number of sensors
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 Near real-time analysis
◦ ISP: controlling service levels

◦ NOAA: tornado detection using weather radar

◦ Hospital: Patient monitoring

 Traditional data feeds
◦ Simple queries (e.g., value lookup) needed in real-

time

◦ Complex queries (e.g., trend analyses) performed 
off-line
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 Stig Støa, Morten Lindeberg and Vera Goebel. Online Analysis 
of Myocardial Ischemia From Medical Sensor Data Streams 
with Esper, to appear 2008/2009

 Queries over sensor traces from surgical procedures on pigs 
performed at IVS, Rikshospitalet, running a open source java 
system called Esper

 Successful identification of occlusion to the heart (heart 
attack) 
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SELECT y, timestamp

FROM Accelerometer.win:ext_timed(t, 5 s)

HAVING count(y) BETWEEN 2 AND 200

Heart attack!



Performance of disks:
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1987 2004 Increase 

CPU Performance 1 MIPS 2,000,000 MIPS 2,000,000 x 

Memory Size 16 Kbytes 32 Gbytes 2,000,000 x 

Memory Performance 100 usec 2 nsec 50,000 x 

Disc Drive Capacity 20 Mbytes 300 Gbytes 15,000 x 

Disc Drive Performance 60 msec 5.3 msec 11 x 

Source: Seagate Technology Paper: ” Economies of Capacity and Speed: 

Choosing the most cost-effective disc drive size and RPM to meet IT requirements”
Memory I/O is much faster 

than disk I/O!

2008

SSD seek time 0.1 ms, but 

capacity is small, e.g. 120 

GB.



 Data model and query semantics: order- and time-based operations
◦ Selection
◦ Nested aggregation 
◦ Multiplexing and demultiplexing
◦ Frequent item queries
◦ Joins
◦ Windowed queries

 Query processing: 
◦ Streaming query plans must use non-blocking operators
◦ Only single-pass algorithms over data streams

 Data reduction: approximate summary structures 
◦ Synopses, digests => no exact answers

 Real-time reactions for monitoring applications => active mechanisms
 Long-running queries: variable system conditions
 Scalability: shared execution of many continuous queries, monitoring 

multiple streams
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 Reduce tuples through several layered operations 
(several DSMSs)

 Store results in static DB for later analysis

 E.g., distributed DSMSs
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VLDB 2003 Tutorial [Koudas & Srivastava 2003]



 Real-time data stream: sequence of items that 
arrive in some order and may only be seen 
once.

 Stream items: like relational tuples
◦ Relation-based: e.g., STREAM, TelegraphCQ and 

Borealis
◦ Object-based: e.g., COUGAR, Tribecca

 Window models
◦ Direction of movements of the endpoints: fixed 

window, sliding window, landmark window
◦ Time-based vs. Tuple-based
◦ Update interval: eager (for each new arriving), lazy 

(batch processing), non-overlapping tumbling 
windows.
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 Mechanism for extracting a finite relation from 
an infinite stream

 Solves blocking operator problem
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(adapted from Jarle Søberg)



 Used for tuple ordering and by the DSMS for 
defining window sizes (time-based)

 Useful for the user to know when the the 
tuple originated

 Explicit: set by the source of data

 Implicit: set by DSMS, when it has arrived

 Ordering is an issue

 Distributed systems: no exact notion of time
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 DBMS: one-time (transient) queries 
 DSMS: continuous (persistent) 
queries

 Unbounded memory requirements
 Blocking operators: window 
techniques

 Queries referencing past data
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 DBMS: (mostly) exact query answer

 DSMS: (mostly) approximate query answer
◦ Approximate query answers have been studied:

 sampling, synopses, sketches, wavelets, histograms, …

 Data reduction:

 Batch processing
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 DBMS: 
◦ Arbitrary data access

◦ One/few pass algorithms have been studied:

 Limited memory selection/sorting: n-pass quantiles

 Tertiary memory databases: reordering execution

 Complex aggregates: bounding number of passes

 DSMS:
◦ Per-element processing: single pass to reduce drops

◦ Block processing: multiple passes to optimize I/O cost
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 DBMS: fixed query plans optimized at 
beginning

 DSMS: adaptive query operators
◦ Adaptive plans plans have been studied:

 Query scrambling: wide-area data access

 Eddies: volatile, unpredictable environments

 Borealis: High Availability monitors and query 
distribution
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 Stream query language issues (compositionality, windows)
 SQL-like proposals suitably extended for a stream 

environment:
◦ Composable SQL operators
◦ Queries reference relations or streams
◦ Queries produce relations or streams

 Query operators (selection/projection, join, aggregation)
 Examples:

◦ GSQL (Gigascope)
◦ CQL (STREAM)
◦ EPL (ESPER)
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3 querying paradigms for streaming data:

1. Relation-based: SQL-like syntax and enhanced support for 

windows and ordering, e.g., CQL (STREAM), StreaQuel 

(TelegraphCQ), AQuery, GigaScope

2. Object-based: object-oriented stream modeling, classify stream 

elements according to type hierarchy, e.g., Tribeca, or model the 

sources as ADTs, e.g., COUGAR

3. Procedural: users specify the data flow, e.g., Borealis, users 

construct query plans via a graphical interface

(1) and (2) are declarative query languages, currently, the relation-

based paradigm is mostly used.
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Traffic   ( sourceIP -- source IP address 
sourcePort -- port number on source

destIP -- destination IP address

destPort -- port number on destination

length -- length in bytes

time -- time stamp

);

26



 Simple DoS (SYN Flooding) identification 
query
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 Selections, (duplicate preserving) projections 
are straightforward
◦ Local, per-element operators

◦ Duplicate eliminating projection is like grouping

 Projection needs to include ordering attribute
◦ No restriction for position ordered streams

SELECT sourceIP, time

FROM Traffic

WHERE length > 512
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 General case of join operators problematic on 
streams
◦ May need to join arbitrarily far apart stream tuples
◦ Equijoin on stream ordering attributes is tractable

 Majority of work focuses on joins between 
streams with windows specified on each stream

SELECT A.sourceIP, B.sourceIP

FROM Traffic1 A [window T1], Traffic2 B [window T2]

WHERE A.destIP = B.destIP
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 General form:
◦ select G, F1 from S where P group by G having F2 

op ϑ

◦ G: grouping attributes, F1,F2: aggregate 
expressions

◦ Window techniques are needed!

 Aggregate expressions:
◦ distributive: sum, count, min, max

◦ algebraic: avg

◦ holistic: count-distinct, median
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 DBMS: table based cardinalities used in query optimization
=> Problematic in a streaming environment

 Cost metrics and statistics: accuracy and reporting delay vs. memory 
usage, output rate, power usage

 Query optimization: query rewriting to minimize cost metric, 
adaptive query plans, due to changing processing time of operators, 
selectivity of predicates, and stream arrival rates

 Query optimization techniques
◦ stream rate based

◦ resource based

◦ QoS based

 Continuously adaptive optimization

 Possibility that objectives cannot be met:
◦ resource constraints

◦ bursty arrivals under limited processing capability
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 Aggregation: approximations e.g., mean or median

 Load Shedding: drop random tuples

 Sampling: only consider samples from the stream 

(e.g., random selection). Used in sensor networks.

 Sketches: summaries of stream that occupy small 

amount of memory, e.g., randomized sketching

 Wavelets: hierchical decomposition

 Histograms: approximate frequency of element 

values in stream
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