

 Introduction
◦ Research field
◦ DBMS vs. DSMS
◦ Motivation

 Concepts and Issues
◦ Requirements
◦ Architecture
◦ Data model
◦ Queries
◦ Data reduction

2

 New and active research field (~ 10 years)
derived from the database community
◦ Stream algorithms
◦ Application and database perspective (we)

 Two syllabus articles:
◦ Brian Babcock, Shivnath Babu, Mayur Datar,

Rajeev Motwani, Jennifer Widom: "Models and
issues in data stream systems"

◦ Lukasz Golab, M. Tamer Ozsu: "Issues in data
stream management”

 Future: Complex Event Processing (CEP)

3

4

Query Processing

Continuous Query (CQ) Result

Query Processing

Main MemoryData Stream(s) Data Stream(s)

Disk

Main Memory

SQL Query Result

 Traditional DBMS:
◦ stored sets of relatively

static records with no
pre-defined notion of
time

◦ good for applications
that require persistent
data storage and
complex querying

5

DSMS:
support on-line analysis of
rapidly changing data
streams
data stream: real-time,
continuous, ordered
(implicitly by arrival time or
explicitly by timestamp)
sequence of items, too
large to store entirely, not
ending
continuous queries

DBMS

 Persistent relations

(relatively static, stored)

 One-time queries

 Random access

 “Unbounded” disk store

 Only current state matters

 No real-time services

 Relatively low update rate

 Data at any granularity

 Assume precise data

 Access plan determined by

query processor, physical DB

design

6

DSMS

Transient streams

(on-line analysis)

Continuous queries (CQs)

Sequential access

Bounded main memory

Historical data is important

Real-time requirements

Possibly multi-GB arrival rate

Data at fine granularity

Data stale/imprecise

Unpredictable/variable data arrival and

characteristics

Adapted from [Motawani: PODS tutorial]

 Sensor Networks

◦ E.g. TinyDB. See earlier lecture by Jarle Søberg

 Network Traffic Analysis

◦ Real time analysis of Internet traffic. E.g.,
Traffic statistics and critical condition
detection.

 Financial Tickers
◦ On-line analysis of stock prices, discover

correlations, identify trends.

 Transaction Log Analysis

◦ E.g. Web click streams and telephone calls

7

Pull-based

Push-based

 A data stream is a (potentially unbounded) sequence of
tuples

 Each tuple consist of a set of attributes, similar to a row in
database table

 Transactional data streams: log interactions between entities

◦ Credit card: purchases by consumers from merchants

◦ Telecommunications: phone calls by callers to dialed parties

◦ Web: accesses by clients of resources at servers

 Measurement data streams: monitor evolution of entity
states

◦ Sensor networks: physical phenomena, road traffic

◦ IP network: traffic at router interfaces

◦ Earth climate: temperature, moisture at weather stations

8

 Massive data sets:
◦ Huge numbers of users, e.g.,

 AT&T long-distance: ~ 300M calls/day

 AT&T IP backbone: ~ 10B IP flows/day

◦ Highly detailed measurements, e.g.,

 NOAA: satellite-based measurements of earth
geodetics

◦ Huge number of measurement points, e.g.,

 Sensor networks with huge number of sensors

9

 Near real-time analysis
◦ ISP: controlling service levels

◦ NOAA: tornado detection using weather radar

◦ Hospital: Patient monitoring

 Traditional data feeds
◦ Simple queries (e.g., value lookup) needed in real-

time

◦ Complex queries (e.g., trend analyses) performed
off-line

10

 Stig Støa, Morten Lindeberg and Vera Goebel. Online Analysis
of Myocardial Ischemia From Medical Sensor Data Streams
with Esper, to appear 2008/2009

 Queries over sensor traces from surgical procedures on pigs
performed at IVS, Rikshospitalet, running a open source java
system called Esper

 Successful identification of occlusion to the heart (heart
attack)

11

SELECT y, timestamp

FROM Accelerometer.win:ext_timed(t, 5 s)

HAVING count(y) BETWEEN 2 AND 200

Heart attack!

Performance of disks:

12

1987 2004 Increase

CPU Performance 1 MIPS 2,000,000 MIPS 2,000,000 x

Memory Size 16 Kbytes 32 Gbytes 2,000,000 x

Memory Performance 100 usec 2 nsec 50,000 x

Disc Drive Capacity 20 Mbytes 300 Gbytes 15,000 x

Disc Drive Performance 60 msec 5.3 msec 11 x

Source: Seagate Technology Paper: ” Economies of Capacity and Speed:

Choosing the most cost-effective disc drive size and RPM to meet IT requirements”
Memory I/O is much faster

than disk I/O!

2008

SSD seek time 0.1 ms, but

capacity is small, e.g. 120

GB.

 Data model and query semantics: order- and time-based operations
◦ Selection
◦ Nested aggregation
◦ Multiplexing and demultiplexing
◦ Frequent item queries
◦ Joins
◦ Windowed queries

 Query processing:
◦ Streaming query plans must use non-blocking operators
◦ Only single-pass algorithms over data streams

 Data reduction: approximate summary structures
◦ Synopses, digests => no exact answers

 Real-time reactions for monitoring applications => active mechanisms
 Long-running queries: variable system conditions
 Scalability: shared execution of many continuous queries, monitoring

multiple streams

13

14

Input

Monitor

Output

Buffer

Q
u

e
ry

 P
ro

c
e
s
s
o
r

Query

Reposi-

tory

Working

Storage

Summary

Storage

Static

Storage
Streaming

Inputs

Streaming

Outputs

Updates to

Static Data

User

Queries

[Golab & Özsu 2003]

15

buffer

input module

buffer

output module

Query processor

user query

static

dB

Query Optimizer

query tree
Load Shedder

System monitor

Concepts from

Borealis

 Reduce tuples through several layered operations
(several DSMSs)

 Store results in static DB for later analysis

 E.g., distributed DSMSs

16

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

 Real-time data stream: sequence of items that
arrive in some order and may only be seen
once.

 Stream items: like relational tuples
◦ Relation-based: e.g., STREAM, TelegraphCQ and

Borealis
◦ Object-based: e.g., COUGAR, Tribecca

 Window models
◦ Direction of movements of the endpoints: fixed

window, sliding window, landmark window
◦ Time-based vs. Tuple-based
◦ Update interval: eager (for each new arriving), lazy

(batch processing), non-overlapping tumbling
windows.

17

 Mechanism for extracting a finite relation from
an infinite stream

 Solves blocking operator problem

18

window

window

window

window window window window

window window window window window window

Sliding:

Jumping:

Overlapping

(adapted from Jarle Søberg)

 Used for tuple ordering and by the DSMS for
defining window sizes (time-based)

 Useful for the user to know when the the
tuple originated

 Explicit: set by the source of data

 Implicit: set by DSMS, when it has arrived

 Ordering is an issue

 Distributed systems: no exact notion of time

19

 DBMS: one-time (transient) queries
 DSMS: continuous (persistent)
queries

 Unbounded memory requirements
 Blocking operators: window
techniques

 Queries referencing past data

20

 DBMS: (mostly) exact query answer

 DSMS: (mostly) approximate query answer
◦ Approximate query answers have been studied:

 sampling, synopses, sketches, wavelets, histograms, …

 Data reduction:

 Batch processing

21

 DBMS:
◦ Arbitrary data access

◦ One/few pass algorithms have been studied:

 Limited memory selection/sorting: n-pass quantiles

 Tertiary memory databases: reordering execution

 Complex aggregates: bounding number of passes

 DSMS:
◦ Per-element processing: single pass to reduce drops

◦ Block processing: multiple passes to optimize I/O cost

22

 DBMS: fixed query plans optimized at
beginning

 DSMS: adaptive query operators
◦ Adaptive plans plans have been studied:

 Query scrambling: wide-area data access

 Eddies: volatile, unpredictable environments

 Borealis: High Availability monitors and query
distribution

23

 Stream query language issues (compositionality, windows)
 SQL-like proposals suitably extended for a stream

environment:
◦ Composable SQL operators
◦ Queries reference relations or streams
◦ Queries produce relations or streams

 Query operators (selection/projection, join, aggregation)
 Examples:

◦ GSQL (Gigascope)
◦ CQL (STREAM)
◦ EPL (ESPER)

24

3 querying paradigms for streaming data:

1. Relation-based: SQL-like syntax and enhanced support for

windows and ordering, e.g., CQL (STREAM), StreaQuel

(TelegraphCQ), AQuery, GigaScope

2. Object-based: object-oriented stream modeling, classify stream

elements according to type hierarchy, e.g., Tribeca, or model the

sources as ADTs, e.g., COUGAR

3. Procedural: users specify the data flow, e.g., Borealis, users

construct query plans via a graphical interface

(1) and (2) are declarative query languages, currently, the relation-

based paradigm is mostly used.

25

Traffic (sourceIP -- source IP address
sourcePort -- port number on source

destIP -- destination IP address

destPort -- port number on destination

length -- length in bytes

time -- time stamp

);

26

 Simple DoS (SYN Flooding) identification
query

27

 Selections, (duplicate preserving) projections
are straightforward
◦ Local, per-element operators

◦ Duplicate eliminating projection is like grouping

 Projection needs to include ordering attribute
◦ No restriction for position ordered streams

SELECT sourceIP, time

FROM Traffic

WHERE length > 512

28

 General case of join operators problematic on
streams
◦ May need to join arbitrarily far apart stream tuples
◦ Equijoin on stream ordering attributes is tractable

 Majority of work focuses on joins between
streams with windows specified on each stream

SELECT A.sourceIP, B.sourceIP

FROM Traffic1 A [window T1], Traffic2 B [window T2]

WHERE A.destIP = B.destIP

29

 General form:
◦ select G, F1 from S where P group by G having F2

op ϑ

◦ G: grouping attributes, F1,F2: aggregate
expressions

◦ Window techniques are needed!

 Aggregate expressions:
◦ distributive: sum, count, min, max

◦ algebraic: avg

◦ holistic: count-distinct, median

30

 DBMS: table based cardinalities used in query optimization
=> Problematic in a streaming environment

 Cost metrics and statistics: accuracy and reporting delay vs. memory
usage, output rate, power usage

 Query optimization: query rewriting to minimize cost metric,
adaptive query plans, due to changing processing time of operators,
selectivity of predicates, and stream arrival rates

 Query optimization techniques
◦ stream rate based

◦ resource based

◦ QoS based

 Continuously adaptive optimization

 Possibility that objectives cannot be met:
◦ resource constraints

◦ bursty arrivals under limited processing capability

31

 Aggregation: approximations e.g., mean or median

 Load Shedding: drop random tuples

 Sampling: only consider samples from the stream

(e.g., random selection). Used in sensor networks.

 Sketches: summaries of stream that occupy small

amount of memory, e.g., randomized sketching

 Wavelets: hierchical decomposition

 Histograms: approximate frequency of element

values in stream

32

